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Abstract - The  use of arrays of voltage-controlled  oscillators  coupled  to  nearest  neighbors 
have  been  proposed as a  means of controlling  the  aperture  phase of one  and  two-dimensional 
phased  array antennas.  It  has  been  demonstrated  both  theoretically  and  experimentally  that 
one  may achieve linear distributions of phase across a linear array aperture by injection 
locking to an  external  oscillator  the  end  oscillators of an  array of a  mutually  injection  locked 
array of oscillators. These linear distributions  cause  steering of the  radiated beam. It is 
demonstrated  theoretically  here  that  one  may  achieve beam steering  in  a  similar  manner  in 
two  dimensions  by  injecting  appropriately  phased  signals  into  the  perimeter  oscillators of a 
two-dimensional  array.  The  analysis is based  on  a  continuum  representation of the  phase 
previously  developed  in the context of beam  steering  via  tuning of the  perimeter  oscillators 
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I. INTRODUCTION 

Some  years  ago,  Stephan [l]  proposed an approach to one  dimensional  (linear)  phased 
array  beam  steering  which  requires  only  a  single  phase  shifter.  This  involves  the  use of a 
linear  array of voltage-controlled  electronic  oscillators  coupled to nearest  neighbors.  The 
oscillators are mutually injection  locked  by  controlling  their  coupling  and  tuning 
appropriately.[2][3]  Stephan’s  approach  consists  of  deriving two signals from a  master 
oscillator, one signal  phase  shifted  with  respect to the  other by means  of a single  phase 
shifter.  These two signals  are  injected  into  the end oscillators  of  the  array  as shown in 
Figure 1 .  The result is a linear phase  progression  across  the  oscillator  array.  Thus, if 
radiating  elements are connected to each  oscillator  and  spaced  uniformly  along  a  line, they 
will radiate  a beam at an  angle to that line  determined by the  phase  gradient  which  is, in 
turn, determined by the phase  difference  between  the  injection  signals.  The  beam  direction 
is therefore  controlled by adjusting  this  phase  difference. 

Recently,  Pogorzelski  and  York  presented  a  formulation which facilitates  theoretical 
analysis of the above  beam  steering  technique.[4][5]  This  was  subsequently  applied by 
Pogorzelski in analysis of two-dimensional  beam  steering  using  perimeter  detuning  of a 
coupled oscillator  array.[6]  The  formulation is based  on a continuum  model in which  the 
oscillator  phases  are  represented by a  continuous  fbnction  satisfjmg  a  partial  differential 
equation  of difision type. This  equation  can  be  solved  via  the  Laplace  transform  and  the 
resulting  solution  exhibits the dynamic  behavior of the  array  as  the  beam  is steered. 



Stephan's  beam  steering  technique  can  be  similarly  generalized to two-dimensional  arrays 
in which  the  beam  control  signals  are  applied  to  the  oscillators  on  the  perimeter  of  the 
array. In this  paper  the  continuum  model  for  this  two-dimensional  case  is  developed  and 
the  dynamic  solution  for  the  corresponding  aperture  phase hnction is obtained.  The 
corresponding  behavior  of  the  resulting  far-zone  radiation  pattern is  displayed  as  well. 

11. THE TWO-DIMENSIONAL CONTMLTUM MODEL 

Consider  a  2M+1 by 2N+1  rectangular  array  of  coupled  voltage-controlled  oscillators. 
Let  the  oscillators  be  indexed by i and j. Suppose  that  externally  derived  signals  are also 
injected  into  the  oscillators  indexed by pq.  By  applying  Adler's  theory  of  the  dynamics of 
injection  locking [7], it can be  shown  that the dynamic  behavior of such an array is 
determined  by a  system  of  simultaneous  differential  equations  which  are  first  order  in  time. 
Specifically, these  governing  equations  are 

where  is  the  free  running  frequency  of  oscillator  ij, CP,, is the phase  associated 
with  the  coupling  between  oscillators ij and mn in the array,  and A ~ m ~ ; q , m  is the  locking 
range  associated  with  that  coupling  and  is  given by 

where aii is the amplitude  of  the  output  signal  of  the ij" oscillator, E~,,,,,, sets  the  strength 
of  the  coupling,  and Q is  the  quality  factor of the  oscillators. AOImj;tj,m are  the  locking 
ranges  associated  with  the  external  injection  signals, is the  associated  coupling 
phase,  and Ow is the  phase  of  each  external  oscillator  signal.  The  phase, e,, is the  phase 
of the  ij*  oscillator;  that is, 

where o,f is the  reference  fiequency for defining  the  phase, h ,  of  each  oscillator.  If  the 
oscillators  are  coupled  only to nearest  neighbors,  equation (1) simplifies to 

Taking  the  coupling  phase to be  zero  and  assuming that the  phase  differences  between 
adjacent  oscillators  are  small,  the  sine  functions may  be  replaced by their  arguments.  Then, 
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following  the  reasoning  detailed in earlier  papers [4][5], it is  noted that, if  all  if  the  locking 
ranges  are  equal,  equation (4) becomes 

As before,  the  quantity in brackets on  the right side of (5) is seen to be  a  discrete 
approximation to the  Laplacian  operator in two dimensions.  Indexing  the  oscillators by 
integer  values of continuous  variables x and y,  and  representing  the  oscillator  phases  by 
the  continuous  fbnction #x,y; e, one  arrives  at the partial  differential  equation, 

for  the  phase  fbnction, #x,y;Q, where t is a  dimensionless  time  measured in inverse 
locking  ranges;  that  is, 

r =  Aw,, t (7) 

and V(x,y) describes the strength and  distribution  of  injection  signals  over  the  array 

A unit  cell one unit  square  is  associated  with  each  oscillator so that  the  array  extent is 
given  by 

As was shown in earlier  work[4][5][6],  the  study  of  the  dynamic  behavior of the  array is 
now a  matter  of  solving  equation ( 6 )  subject to Neumann  boundary  conditions  at 
x = &(a + $) and  at y = _+(b + i) where  a  and b correspond to index  values  i=M  and j=N 
denoting  the  perimeter  oscillators in the  array. 

111. BEAMSTEERING IN TWO DIMENSIONS 

Consider  a  rectangular array with (2M+1)(2N+I) oscillators  extending  over  the  range 
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Beamsteering  requires  that  the  aperture  constant  phase  surface  be  planar  but  with  normal 
tilted with respect to the  normal to the  aperture.  The  beam  is  directed  normal to this  tilted 
constant  phase  surface  and  is  thus  steered  away  from  the  aperture  normal  direction. To 
obtain  such an aperture phase  distribution,  we  begin  by  considering the  following  situation 
as a prelmnary. First,  all  oscillators  are  tuned to the  external  injection  frequency  which is 
take to be  the  reference  frequency in the  differential  equation.  Extending  Stephan’s 
approach to two dimensions  implies  injection  signals  at the  oscillators  on  the  perimeter of 
the  array.  Thus V(x,y) takes  the  form 

where 

and 

The  use of the  Dirac  delta knction in  this  context  was  considered in detail  previously  and 
will therefore  be  used  here  without krther discussion.[4][5]  For  perimeter  injection XI’, 

x2’,  yl’,  and  y2’ are  set to -a, a, -b,  and  b,  respectively  but will be left general  for  now.  It  is 
important to recognize  that P and Q set  the  strength  and  distribution of the  injection 
signals  but their phase enters  the  formulation  through the fbnction & in (6).  Substituting 
(10) into (6)  results in 

Now  temporarily  consider  the  homogeneous  equation, 

The plan of attack is to Solve this  equation with Neumann  boundary  conditions for the 
eigefinctions and to write  the  Green’s hnction as  a  series  expansion in these 
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eigenfhctions. Finally,  the  Green’s hnction will be  used to  solve (13). Laplace 
transformation of (14) with respect to 7: results in 

a2f a2f 
a’ 4 - + ~ - C P ( x ) f - C Q ~ ) f  - s f = o  , 

where f is the  Laplace  transform of 4. Now,  let f(x,y)=X(x,sJY(y,s$. Separation of 
variables  then  yields 

X ” - C P X - s , x = o ,  
Y ‘ f - C Q Y - ~ y Y = O ,  (16) 

where s=sx+sy and the  double  primes  of  course  indicating  second  order  differentiation 
with  respect to the  spatial  variable.  Substituting (1  2) into (1 6)  now  gives 

X” - Q,S(X - x; )  - R,*S(X - x ; )  - s,X = 0 ,  

Y’, - R, S(y - y;) - R,,S(y - y ; )  - syY = 0 .  (1 7) 

These  equations  are  now  solved  for  the  eigenfbnctions  satisfjing  Neumann  boundary 
conditions.  Because of the  similarity of the  two  forms,  the  equation for X will be  treated 
and the  solution for Y will  then  follow  by  inspection. The  solution  is  postulated in the 
form 

X = A, cosh[ &(a + + x ] ]  cosh[ A( a + - !)] 
1 

X =  4 cosh[&-(a+i-x)]cosh[&-(a+i+x,’)] 

X = A, cash[ &(a + - x)]cosh[ &(a + + x,’)] 

1 
2 

, x ; s x < a + -  

The  constants, A1 and A*, as well  as  the  eigenvalues, s, are  determined by the  slope 
discontinuity  conditions  at X I ‘  and xz’ which are  obtained by integrating ( 1  7) across each 
of these  discontinuity  points.  The  resulting  conditions are 
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Application of these  conditions  to (1 8) yields 

where 

M I ,  = &sinh[&-(2u + 1)]+ R, cosh [ A ( a + - ; + x: I] cosh [ & ( a + - : - 4  
M I ,  = R, cosh[ &( n + i + x:) ]  cosh[ &-( a + i - x ; ) ] ,  

M,,  '= ax, cosh[ A( a + + x:) ]  cosh[ &(a + - x ; ) ] ,  

M, ,  = &sinh[&(2a + l)] + S Z ,  cosh [ A ( a + - + x;  )] c o s h [ d a  + +-- x ; ) ] .  

The  determinant of the  coefficients  reduces to 

A = sinh[&(a + l)](s, sinh[&(2a + l)] +;(a,, + R,),&cosh[&(h + l)] 

1 
+ Q, & cosh[ &(2x,')] + f C I x 2  & cosh[ &(2x;)] (22) 

1 - - 2 a ,  aX2 sinh[ &(x,' - x;)]( cash[ &(Zu + 1 + x,' - X;)] + cash[ &(x,' + X;)]}) . 

Setting  this  determinant  equal to zero  yields  a  transcendental  equation for the  eigenvalues, 
G, which can be  solved  numerically.  Moreover,  using  (20)  one  can  easily  show that  the 
corresponding  eigenfunctions are given by ( 18) with 

A, = MI, = A,"' , 
A,  = -M2, = A, ( 1  1 , 

or 
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These  two  choices  of  constants  yield  the  same  eigenfbnction  to  within  a  constant  which of 
course  becomes  irrelevant  upon  normalization  of  the  functions.  Substitution of the 
constants  into ( 1  8) gives  the  final  result  for X(x,sd in the form, 

X ( x ,  s, ) = cosh [J-( s, 2h, - I xi  - x o ]  + fl cosh [4-( s, 2h, - I x,' - X I ) ]  

1 
2 

where h, = a + - and the  choice  of 77 equal to +1 or -1 corresponds to selecting (23) or 

(24). The  choice  becomes  useful  if  the  determinant (22) is  zero by virtue of  both  elements 
of  a  row  becoming zero. This  renders  both  the  eigenfbnction  and  its  normalization 
integral zero so that  the  expression  for  the  normalized eigdnct ion becomes 
indeterminate. when this happens, the other  choice  yields a determinate  result.  The 
normalization  integrand  which  is  the  square of (25)' while  complicated, can be  integrated 
in closed form yielding a  closed  form  expression  for  each of the normalized 
eigenfbnctions. A similar process  provides  the  corresponding set of y dependent 
eigedbnctions. The  products of the x and y dependent eigednctions are  the 
eigenfbctions of  the  two-dimensional  problem. 

The  above set of  two-dimensional eigednctions form an orthonormal set suitable  for 
representing  the  Green's hnction as a series.  The  familiar  result  is 

which  is  the  solution  of 

with P and Q given by ( 1  2). 

Returning  now  to ( 13), the  Laplace  transform  of  the  inhomogeneous  equation  is 
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The  solution in terms  of  the  Green's hnction is,  of course,  expressible  as 

Specifically,  the  necessary P, Q, and f;n, for  beamsteering  can  be  obtained  as  follows. 
From (28) one can infer  that,  iffrnl  is  linear in x and y,  the  steady state value of 4 at the 
oscillators  which are externally  injected will be  equal to &. Thus, to establish  a  planar 
phase  across  the  array  it  is  appropriate to use  a h c t i o n  f w  which  is  linear  in x and y 
representing  the  desired  planar  phase  variation. For a  radiating  aperture  with  element 
spacing, d, the hnction required to point  the  beam in a  direction  given by polar  angles, 
(qb, eo), with  respect to the array  normal  is,  therefore, 

where h is the free space  wavelength.  The  integrations in (29) involving the  Dirac  delta 
functions in P and Q can  be  carried  out in closed  form  and  the  inverse  Laplace  transform  is 
then  merely  a  matter of evaluating the residues  at  the  simple  pole  contained in each  term 
of  the  series.  If  the  injection  signal  phase is  switched at  time  zero; i.e., contains  a  unit step 
function;  the hnctionJnj will  contain  an s in its  denominator.  That  is,  it will have a simple 
pole  at  the  origin of the s plane.  This will give  rise to a  series  of  time  independent  terms in 
the  inverse  transform  which  represent  the  steady state solution  for  phase.  Thus, the 
overall  solution will  have  the  form 
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where X,,,, is the  residue at s > = S m + S n  and u(Q is the unit step fkction. This  series  is  very 
slowly  convergent  particularly  at  late  times.  However,  the  convergence  rate  can  be  vastly 
improved by using  the  steady state  solution in the  closed  form, 

c f  l y  y,s)) = -(xsin 6, cos4, + ysin So sin 
R 

and  rewriting (32) as, 

This form  converges  rapidly  for  all  but  the  earliest  times  when  the  phase  is  essentially 
equal to its  initial  value  which  is, in this  case,  zero. 

IV. A NUMERICAL EXAMPLE 

Consider  a 21 by 2 1 element  square  array with radiating  elements  spaced  one  half 
wavelength  apart.  Injection  signals  are  assumed  to  be  applied to the  perimeter  oscillators 
with  phases  appropriate to steering the beam to far-zone  coordinates 8O=3O0 and 40=-110° 
switched  at  time  zero.  Figure 2 illustrates  the  ensuing  dynamic  behavior  of the oscillators 
phases. Note that  during  this  transient  period  the  phase  surface  is  nonplanar  which  results 
in some  aberration  induced  gain  reduction  and  sidelobe  distortion  in  the  far-zone  beam. 
Figure 3 traces  the  evolution  of the beam shape  during  the  beamsteering  transient by 
displaying  the  locations  of  the  beam  peak  and  the  three  dB  contour  at  a  sequence  of  times 
&om 0 to 45 inverse  locking  ranges in increments  of 5 as noted  on the graph.  The  effect 
of  aberration  on  the  beam  shape  is  evident in the  early  stages  of  the  transition.  Figure 4 
shows the effect  of this aberration  on  the  far-zoae  gain as a  function  of  time.  The  curve 
labeled  “Ideal Gain” includes  the  projected  aperture  loss  but no  aberration  loss for 
comparison.  In all cases  discussed so far,  the  injection  level  is  such  that  the  external 
injection  locking  range  is 70% of  the  inter-oscillator  injection  locking  range;  i.e., C as 
defined  in  equation (35) is 0.7. Figures 5 and 6 show  the  gain  as  a  function  of  time  for 
weaker (C=0.2) and stronger (C=lO.O) injection  levels,  respectively. Note  that  the 
transient  decays  faster  for  higher  injection  levels  but  that  the  initial  gain dip is deeper  and 
the beam  peak  initially  moves  more  erratically.  Finally,  Figure 7 shows  the  result  of 
successive  application  of  a  sequence  of  beamsteering  phases  using the representation  of 
Figure 3 and  returning to  the  original C=0.7 level.  Here  again,  as in Figure 3, the  notation 
on  the  graph  indicates  a  sequence of times, in this  case  fiom 0 to 397.5 inverse  locking 
ranges in increments of 2.5. 
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V. CONCLUDING REMARKS 

A beam  scanning  concept  proposed by Stephan in the  context of a  one-dimensional  phased 
array  antenna  has  been  generalized  to  two-dimensional  arrays. A continuum  formalism 
developed  over  the  past  several  years  and  described in earlier  publications  was  applied in 
analysis  of  the  corresponding  two-dimensional  case and the  resulting  beamsteering 
dynamics  illustrated  via  numerical  computation. As described  previously  in  terms  of  the 
one  dimensional  case [5], although when the  steering  phase  shift  is  applied  suddenly,  the 
overall  phase shift across  the  entire  array is  limited to less  than  ninety  degrees,  gradual 
change in the  applied  phase  shift  permits  phase  shifts  limited  only by the  ninety  degree 
inter-oscillator  phase  difference  limit. Thus, the  actual  limit  on  phase  shift  across  the 
entire  array  is  ninety  degrees  times  the  number  of  oscillators  less  one.  For half wavelength 
spacing  of  the  radiating  elements,  this  would seem to limit the beam scan to thuty  degrees 
fiom  normal, this limit may be  removed by placing  an  additional  oscillator  between  each 
radiating  oscillator or by radiating  the  second  harmonic  fiequency.[6]  Finally,  it is 
remarked  that  Stephan’s  scheme  represents an alternative to the  detuning  method  of  Liao 
and  York  [8]  described in reference  [6],  but  appears to be  somewhat  more  complicated to 
implement  because of the need  for  linear  phase  progressions  along  the  array  edges  as 
opposed to the  constant  tuning  voltages  used in the  latter  technique. 
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Figure Captions 

Figure 1 .  Stephan’s single  phase  shifter  beamsteering  scheme. 

Figure 2. Phase dynamics  during beam steering. 

Figure 3. Antenna  beam peak and three dB contours. 

Figure 4. Antenna gain during beam steering. 

Figure 5.  Antenna  gain  during beam steering for weak injection. 

Figure 6.  Antenna  gain  during beam steering for strong  injection. 

Figure 7. Sequential beam steering. 
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Figure 1 .  Stephan's  single  phase  shifter  beamsteering  scheme. 
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Figure 2. Phase  dynamics  during  beam steering. 
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Figure 3. Antenna  beam peak and three dB contours. 
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Figure 4. Antenna  gain  during  beam  steering. 
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Figure 5. Antenna  gain  during  beam  steering for weak injection. 
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Figure 6.  Antenna  gain  during  beam  steering for strong  injection. 
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Figure 7. Sequential beam steering. 


